Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Patrick Henkel, Robert Bensch, Sai Parimi, Jan Fischer, Ulrich Mittmann, ANavS GmbH

ION ITM 2024, Long Beach, USA

January 23rd, 2024.

Advanced Navigation Solutions

<u>Flexible Mobility and Cargo System</u> for factory works traffic (FLOOW)

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

www.anavs.com

Advanced Navigation Solutions

Integrated Sensor Platform (ISP) of ANavS

with both Indoor and Outdoor Environments

www.anavs.com

Advanced Navigation Solution

ANavS Architecture for Sensor Fusion

ANavS Architecture for Sensor Fusion

RTK + INS + ODO tightly coupled positioning in challenging environments (Interior Highway Circle in Munich, Germany, "B2R")

white: ANavS blue: OXTS

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

white: ANavS blue: OXTS

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

www.anavs.com

Advanced Navigation Solution

white: ANavS blue: OXTS

Advanced Navigation Solutions

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

white: ANavS blue: OXTS

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

www.anavs.com

Advanced Navigation Solutions

white: ANavS blue: OXTS

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

www.anavs.com

dvanced Navigation Solution

white: ANavS blue: OXTS

Advanced Navigation Solutions

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

www.anavs.com

11-

ANavS Architecture for Sensor Fusion

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Outdoor Indoor

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

www.anavs.com

:1

3

-13-

Outdoor LiDAR positioning accuracy using GNSS + INS tightly coupled RTK reference

Position deviations between LiDAR and RTK reference:

max	0.194 m
mean	0.083 m
median	0.067 m
min	0.003 m
rmse	0.095 m
stddev	0.045 m

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

LiDAR-based positioning in combined indoor/ outdoor environment

Advanced Navigation Solutions

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments www.anavs.com

-16-

ÁNAVS

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

-19-

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

GNSS + INS + ODO-RTK and Lidar-SLAM (LIO-SAM) in Combined Indoor- and Outdoor Environment

View 1						
Last corrections: 2.6 s	-	ATUTUSE 🧿	RTK 🥥 LIGH 🌑		Thursday, Feb 24,	2022 3:20:43 pm
View 3	Solution	-III- Filters	M Sensors	Settings	File	53:34
Absolute Positi	ion	Total in use:	17	Select Filter	Last Update: 0.0 s	
Latitude	48.13425699 *					
Longitude	11.40906146 * 520.225 m	/ Nor			in the second	
neight	355.255 11			SAL ME COM	AND THE	
Relative Position	on		<u> </u>	Le - Cur	1112	
North	-187.040 m			14110	all and the	EEE T
East	-7081.893 m		× 1	A Statist	3.9 5	
Down	-0.217 m	- 20 "		the site att the	111620	
Length	7084.363 m	Signal (dB-Hz)		A PER	and the	
Attitude		Orman Die				
Heading	67.92 °	△Galleo 7 ◇S	BAS 0		11:20	- Star
Pitch					and the second se	
Filteri	-0.43 °	<∱Beidou 3 ™ U	rknown 0	Frank Co		230
Roll	-0.43 ° -0.31 °	CBeidou 3 7 U	o 2 o 3		ACIN	20
Roll	-0.43 ° -0.31 °	 Boldou 3 T U Frequency ID L1CA, L10F, E1, B1 L2C, L20F, E50, B2 	oknown 0 ● 2 ● 3		ALL .	S

View 2

Comparison Between MSRTK and LiDAR based Positioning Solution

Location:	Hornbach Indoor Parking Space, Munich. Germanv
Speed:	~20-30 kmph
Driving scenario:	Transition between Indoor and Outdoo environment
View 1: First per	son view captured by FLIR camera
View 2. Bird-Eve-	View of VIP-16 LiDAR SLAM

View 3: ANaVS GUI app showing satellite sky plot and real time positioning solution

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Indoor Localization Accuracy using Laser Scanner-based Ground Truth

Positioning deviations between Lidar and ground truth from laser scanner:

1.064

- 0.537

0.009

max	1.064 m
mean	0.122 m
median	0.089 m
min	0.009 m
rmse	0.148 m
std	0.084 m

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

ANavS Architecture for Sensor Fusion

with both Indoor and Outdoor Environments

www.anavs.com

-22-

Visual Camera-based Positioning with Al-based Feature Matching

SuperPoint [1] Al-based feature detector and descriptor computation.

[1] D. DeTone, T. Malisiewicz, and A. Rabinovich. "SuperPoint: Self-Supervised Interest Point Detection and Description ", in CVPR Workshop on Deep Learning for Visual SLAM, 2018.

Localization on Road maps: Al-based feature matching based-on SuperPoint [1].

-23

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Visual Camera-based Positioning with AI-based Feature Matching

Advanced Navigation Solutions

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Al-assisted Localization on Road Maps (Validation)

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Acknowledgement

Supported by:

Federal Ministry for Economic Affairs and Climate Action Project FLOOW

Grant number: FKZ 19A20025A

on the basis of a decision by the German Bundestag

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments

Contact data

ANavS GmbH Gotthardstraße 40 80686 München Germany

Advanced Navigation Solutions

We are the Collaborative Change Makers.

Managing directors:	Dr. Patrick Henkel
Phone numbers:	+49 - (0)89 - 890567 - 21
Emails:	patrick.henkel@anavs.de
Web:	www.anavs.de

Precise Positioning for Autonomous Driving in Areas with both Indoor and Outdoor Environments